METRIC SPACES: FINAL EXAM 2014

DOCENT: A. V. KISELEV

Problem 1. Let (\mathfrak{X}, d) be a non-empty metric space, r and s be two positive radii, and $B_r^d(x) = B_s^d(y)$ for some $x, y \in \mathfrak{X}$.

- Is it true that r = s?
- Is it true that x = y?

Problem 2. Let $d^{(1)}$ and $d^{(2)}$ be two metrics on a set $\mathcal{X} \neq \emptyset$. By definition, put $d(x,y) = \max(d^{(1)}(x,y), d^{(2)}(x,y))$ for all $x,y \in \mathcal{X}$. Is the function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ always a metric on \mathcal{X} ?

Problem 3 (top). Let $A \subseteq \mathfrak{X}$ be a connected subset of a space \mathfrak{X} and suppose that a non-empty subset $B \subseteq \mathfrak{X}$ is such that

$$A \subseteq B \subseteq \overline{A}$$
.

Prove that B is connected.

Problem 4 (top). Let A and B be compact subsets of a Hausdorff space X. Prove that their intersection $A \cap B$ is compact.

Problem 5. Prove that the algebraic equation $9x = 1 - x^5$ has a unique solution in the segment $[0, 1] \subset \mathbb{R}$.